3.3.81 \(\int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx\) [281]

3.3.81.1 Optimal result
3.3.81.2 Mathematica [A] (verified)
3.3.81.3 Rubi [A] (verified)
3.3.81.4 Maple [B] (verified)
3.3.81.5 Fricas [A] (verification not implemented)
3.3.81.6 Sympy [F]
3.3.81.7 Maxima [B] (verification not implemented)
3.3.81.8 Giac [F]
3.3.81.9 Mupad [F(-1)]

3.3.81.1 Optimal result

Integrand size = 37, antiderivative size = 136 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\sqrt {2} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{\sqrt {a} d}+\frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a+a \sec (c+d x)}}-\frac {2 A \sqrt {\sec (c+d x)} \sin (c+d x)}{3 d \sqrt {a+a \sec (c+d x)}} \]

output
(A+C)*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec(d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x 
+c))^(1/2))*2^(1/2)/d/a^(1/2)+2/3*A*sin(d*x+c)/d/sec(d*x+c)^(1/2)/(a+a*sec 
(d*x+c))^(1/2)-2/3*A*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*sec(d*x+c))^(1/2)
 
3.3.81.2 Mathematica [A] (verified)

Time = 1.12 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.91 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\frac {\left (2 A (-1+\cos (c+d x)) \sqrt {1-\sec (c+d x)}-3 \sqrt {2} (A+C) \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sqrt {\sec (c+d x)}\right ) \tan (c+d x)}{3 d \sqrt {-((-1+\sec (c+d x)) \sec (c+d x))} \sqrt {a (1+\sec (c+d x))}} \]

input
Integrate[(A + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d* 
x]]),x]
 
output
((2*A*(-1 + Cos[c + d*x])*Sqrt[1 - Sec[c + d*x]] - 3*Sqrt[2]*(A + C)*ArcTa 
n[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sqrt[Sec[c + d*x]]) 
*Tan[c + d*x])/(3*d*Sqrt[-((-1 + Sec[c + d*x])*Sec[c + d*x])]*Sqrt[a*(1 + 
Sec[c + d*x])])
 
3.3.81.3 Rubi [A] (verified)

Time = 0.69 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.06, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.216, Rules used = {3042, 4575, 27, 3042, 4501, 3042, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {A+C \csc \left (c+d x+\frac {\pi }{2}\right )^2}{\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4575

\(\displaystyle \frac {2 \int -\frac {a A-a (2 A+3 C) \sec (c+d x)}{2 \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}+\frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a A-a (2 A+3 C) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\int \frac {a A-a (2 A+3 C) \csc \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 4501

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-3 a (A+C) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-3 a (A+C) \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{3 a}\)

\(\Big \downarrow \) 4295

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {6 a (A+C) \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}+\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}}{3 a}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {2 A \sin (c+d x)}{3 d \sqrt {\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}-\frac {\frac {2 a A \sin (c+d x) \sqrt {\sec (c+d x)}}{d \sqrt {a \sec (c+d x)+a}}-\frac {3 \sqrt {2} \sqrt {a} (A+C) \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}}{3 a}\)

input
Int[(A + C*Sec[c + d*x]^2)/(Sec[c + d*x]^(3/2)*Sqrt[a + a*Sec[c + d*x]]),x 
]
 
output
(2*A*Sin[c + d*x])/(3*d*Sqrt[Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) - ((- 
3*Sqrt[2]*Sqrt[a]*(A + C)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x] 
)/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/d + (2*a*A*Sqrt[Sec[c + d*x]]*Sin[c 
 + d*x])/(d*Sqrt[a + a*Sec[c + d*x]]))/(3*a)
 

3.3.81.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4501
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e 
 + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(a*A*m 
 - b*B*n)/(b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x] 
, x] /; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a 
^2 - b^2, 0] && EqQ[m + n + 1, 0] &&  !LeQ[m, -1]
 

rule 4575
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_. 
))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Co 
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/( 
b*d*n)   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b 
*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, 
 C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || 
 EqQ[m + n + 1, 0])
 
3.3.81.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(271\) vs. \(2(113)=226\).

Time = 0.88 (sec) , antiderivative size = 272, normalized size of antiderivative = 2.00

method result size
parts \(\frac {A \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}+3 \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sec \left (d x +c \right )+2 \sin \left (d x +c \right )-2 \tan \left (d x +c \right )\right )}{3 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}-\frac {C \sqrt {2}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \sqrt {\sec \left (d x +c \right )}\, \cos \left (d x +c \right )}{d a \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\) \(272\)
default \(\frac {\sqrt {a \left (1+\sec \left (d x +c \right )\right )}\, \left (3 A \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {2}+3 C \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \sqrt {2}+3 A \sqrt {2}\, \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sec \left (d x +c \right )+3 C \sqrt {2}\, \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}\, \arctan \left (\frac {\sin \left (d x +c \right ) \sqrt {2}}{2 \left (\cos \left (d x +c \right )+1\right ) \sqrt {-\frac {1}{\cos \left (d x +c \right )+1}}}\right ) \sec \left (d x +c \right )+2 A \sin \left (d x +c \right )-2 A \tan \left (d x +c \right )\right )}{3 d a \left (\cos \left (d x +c \right )+1\right ) \sec \left (d x +c \right )^{\frac {3}{2}}}\) \(294\)

input
int((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x,method=_R 
ETURNVERBOSE)
 
output
1/3*A/d/a*(a*(1+sec(d*x+c)))^(1/2)/(cos(d*x+c)+1)/sec(d*x+c)^(3/2)*(3*2^(1 
/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2) 
)*(-1/(cos(d*x+c)+1))^(1/2)+3*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos(d 
*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(-1/(cos(d*x+c)+1))^(1/2)*sec(d*x+c)+2 
*sin(d*x+c)-2*tan(d*x+c))-C/d/a*2^(1/2)*arctan(1/2*sin(d*x+c)*2^(1/2)/(cos 
(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2))*(a*(1+sec(d*x+c)))^(1/2)*sec(d*x+c)^ 
(1/2)*cos(d*x+c)/(cos(d*x+c)+1)/(-1/(cos(d*x+c)+1))^(1/2)
 
3.3.81.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 338, normalized size of antiderivative = 2.49 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\left [\frac {\frac {3 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - \frac {2 \, \sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{\sqrt {a}} + \frac {4 \, {\left (A \cos \left (d x + c\right )^{2} - A \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{6 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}, -\frac {3 \, \sqrt {2} {\left ({\left (A + C\right )} a \cos \left (d x + c\right ) + {\left (A + C\right )} a\right )} \sqrt {-\frac {1}{a}} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {-\frac {1}{a}} \sqrt {\cos \left (d x + c\right )}}{\sin \left (d x + c\right )}\right ) - \frac {2 \, {\left (A \cos \left (d x + c\right )^{2} - A \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{3 \, {\left (a d \cos \left (d x + c\right ) + a d\right )}}\right ] \]

input
integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="fricas")
 
output
[1/6*(3*sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*log(-(cos(d*x + c)^2 
- 2*sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin 
(d*x + c)/sqrt(a) - 2*cos(d*x + c) - 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 
 1))/sqrt(a) + 4*(A*cos(d*x + c)^2 - A*cos(d*x + c))*sqrt((a*cos(d*x + c) 
+ a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c) + a* 
d), -1/3*(3*sqrt(2)*((A + C)*a*cos(d*x + c) + (A + C)*a)*sqrt(-1/a)*arctan 
(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*sqrt(cos(d*x + 
 c))/sin(d*x + c)) - 2*(A*cos(d*x + c)^2 - A*cos(d*x + c))*sqrt((a*cos(d*x 
 + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a*d*cos(d*x + c 
) + a*d)]
 
3.3.81.6 Sympy [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A + C \sec ^{2}{\left (c + d x \right )}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )} \sec ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((A+C*sec(d*x+c)**2)/sec(d*x+c)**(3/2)/(a+a*sec(d*x+c))**(1/2),x)
 
output
Integral((A + C*sec(c + d*x)**2)/(sqrt(a*(sec(c + d*x) + 1))*sec(c + d*x)* 
*(3/2)), x)
 
3.3.81.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 373 vs. \(2 (113) = 226\).

Time = 0.46 (sec) , antiderivative size = 373, normalized size of antiderivative = 2.74 \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=-\frac {\frac {{\left (3 \, \sqrt {2} \cos \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) - 3 \, \sqrt {2} \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) \sin \left (\frac {2}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) - 3 \, \sqrt {2} \log \left (\cos \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) + 1\right ) + 3 \, \sqrt {2} \log \left (\cos \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right ) + 1\right ) - 2 \, \sqrt {2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 3 \, \sqrt {2} \sin \left (\frac {1}{3} \, \arctan \left (\sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ), \cos \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right )\right )\right )\right )} A}{\sqrt {a}} - \frac {3 \, {\left (\sqrt {2} \log \left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right ) - \sqrt {2} \log \left (\cos \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )\right )} C}{\sqrt {a}}}{6 \, d} \]

input
integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="maxima")
 
output
-1/6*((3*sqrt(2)*cos(2/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c 
)))*sin(3/2*d*x + 3/2*c) - 3*sqrt(2)*cos(3/2*d*x + 3/2*c)*sin(2/3*arctan2( 
sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))) - 3*sqrt(2)*log(cos(1/3*arcta 
n2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/ 
2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + 2*sin(1/3*arctan2(sin(3/2*d*x + 
 3/2*c), cos(3/2*d*x + 3/2*c))) + 1) + 3*sqrt(2)*log(cos(1/3*arctan2(sin(3 
/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c)))^2 + sin(1/3*arctan2(sin(3/2*d*x + 
3/2*c), cos(3/2*d*x + 3/2*c)))^2 - 2*sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), 
 cos(3/2*d*x + 3/2*c))) + 1) - 2*sqrt(2)*sin(3/2*d*x + 3/2*c) + 3*sqrt(2)* 
sin(1/3*arctan2(sin(3/2*d*x + 3/2*c), cos(3/2*d*x + 3/2*c))))*A/sqrt(a) - 
3*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2 
*d*x + 1/2*c) + 1) - sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/ 
2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))*C/sqrt(a))/d
 
3.3.81.8 Giac [F]

\[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {C \sec \left (d x + c\right )^{2} + A}{\sqrt {a \sec \left (d x + c\right ) + a} \sec \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((A+C*sec(d*x+c)^2)/sec(d*x+c)^(3/2)/(a+a*sec(d*x+c))^(1/2),x, al 
gorithm="giac")
 
output
integrate((C*sec(d*x + c)^2 + A)/(sqrt(a*sec(d*x + c) + a)*sec(d*x + c)^(3 
/2)), x)
 
3.3.81.9 Mupad [F(-1)]

Timed out. \[ \int \frac {A+C \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {A+\frac {C}{{\cos \left (c+d\,x\right )}^2}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}\,{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \]

input
int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3 
/2)),x)
 
output
int((A + C/cos(c + d*x)^2)/((a + a/cos(c + d*x))^(1/2)*(1/cos(c + d*x))^(3 
/2)), x)